Thermodynamic System Drift in Protein Evolution
نویسندگان
چکیده
Proteins from thermophiles are generally more thermostable than their mesophilic homologs, but little is known about the evolutionary process driving these differences. Here we attempt to understand how the diverse thermostabilities of bacterial ribonuclease H1 (RNH) proteins evolved. RNH proteins from Thermus thermophilus (ttRNH) and Escherichia coli (ecRNH) share similar structures but differ in melting temperature (T(m)) by 20 °C. ttRNH's greater stability is caused in part by the presence of residual structure in the unfolded state, which results in a low heat capacity of unfolding (ΔCp) relative to ecRNH. We first characterized RNH proteins from a variety of extant bacteria and found that Tm correlates with the species' growth temperatures, consistent with environmental selection for stability. We then used ancestral sequence reconstruction to statistically infer evolutionary intermediates along lineages leading to ecRNH and ttRNH from their common ancestor, which existed approximately 3 billion years ago. Finally, we synthesized and experimentally characterized these intermediates. The shared ancestor has a melting temperature between those of ttRNH and ecRNH; the T(m)s of intermediate ancestors along the ttRNH lineage increased gradually over time, while the ecRNH lineage exhibited an abrupt drop in Tm followed by relatively little change. To determine whether the underlying mechanisms for thermostability correlate with the changes in T(m), we measured the thermodynamic basis for stabilization--ΔCp and other thermodynamic parameters--for each of the ancestors. We observed that, while the T(m) changes smoothly, the mechanistic basis for stability fluctuates over evolutionary time. Thus, even while overall stability appears to be strongly driven by selection, the proteins explored a wide variety of mechanisms of stabilization, a phenomenon we call "thermodynamic system drift." This suggests that even on lineages with strong selection to increase stability, proteins have wide latitude to explore sequence space, generating biophysical diversity and potentially opening new evolutionary pathways.
منابع مشابه
Correction: Thermodynamic System Drift in Protein Evolution
At the time of publication, the ancestral sequence data from this paper had not been deposited. The ancestral sequences shown in S2B Fig. are now available in GenBank (KP271037—KP271043). An easily accessible sequence alignment file for S2B Fig. is now also available (S1 File). an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestri...
متن کاملStructural Characteristics of Stable Folding Intermediates of Yeast Iso-1-Cytochrome-c
Cytochrome-c (cyt-c) is an electron transport protein, and it is present throughout the evolution. More than 280 sequences have been reported in the protein sequence database (www.uniprot.org). Though sequentially diverse, cyt-c has essentially retained its tertiary structure or fold. Thus a vast data set of varied sequences with retention of similar structure and fun...
متن کاملSmooth Change, Mechanistic Fluctuation: Thermodynamic System Drift in Protein Evolution
If you heat a protein up, the tertiary contacts that secure its three-dimensional shape weaken until eventually the protein unfolds, or ‘‘melts.’’ Not surprisingly, proteins from thermophilic organisms, such as the bacteria that live in hot springs, tend to have higher melting temperatures than their homologs from mesophiles like humans or the bacteria that live within them. The increased melti...
متن کاملModified Feynman ratchet with velocity-dependent fluctuations
The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects — which manifest the required velocity-dep...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کامل